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Abstract

In this paper an approach to the kinematic calibration of serial robots with six
revolute axis in general, and the KUKA KR-15/2 in particular, is presented. We
proceed by formulating how the pose of the robot (the position and orientation of
the end effector) varies with the kinematic parameters which describe the robot
geometry. Two models are presented, both based on the Denavit-Hartenberg pa-
rameters. The first can be used when measurements all six pose variables, or any
sub-set are available. The second set can be used when only position measurements
are available. The DH parameters are introduced in tutorial form before the calibra-
tion equations are derived. The Pose measurement is achieved by comparing relative
linear robot motions to parallel standard ruled and flat straight edges. Images from
a CCD camera mounted to the tool flange yield relative distance measurements
along the length of the ruled straight edge while a stereo laser displacement sensor
yields height measurements above the flat straight edge. The pose of a robot is
specified by six independent position and orientation parameters. Because of this
independence, subsets of these parameters can be used to formulate the system of
calibration equations. Experimental results using the three x, y, z position coordi-
nates are presented.

1 Introduction

Nothing can be manufactured so that nominally specified dimensions exactly match the
actual ones. For a robot, this means the distances between the revolute axis centres and
the relative orientation of the axes themselves will vary from nominal values. The result of
these deviations is that there will be a difference between where the robot thinks it is and
where it really is. For some robot tasks, such as spray painting or spot welding, this may
not be too critical an issue. But, in applications where positions, or continuous trajectories
are computed by a device external to that of the robot controler the deviations can be
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critical. Because striving for greater precision in machining and assembly is prohibitively
costly, robot calibration has come to be thought of as necessary.

If the task permits, it may be that the robot can be implicitly calibrated with re-
spect to the task itself, see [1] for example. If this is not possible, or practical, then
a standard calibration procedure must be performed. We proceed by formulating how
the end-effector (EE) pose varies with the Denavit-Hartenberg (DH) parameters. For
kinematic calibration, the derivation of this relation begins with

x = T(ϕ,α, a,d), (1)

where x is the vector of pose variables (the x, y, z coordinates of an EE reference point
and the ZY X Euler angles of the EE reference frame all with respect to the relatively
fixed robot base frame, see Figure 1), T is the functional relationship depending upon
the DH parameters: the vector of joint angles, ϕ; the vector of skew angles between
neighbouring joint axes, α; the vector of link lengths, a; and the vector of joint offsets,
d. Variations of the EE pose with respect to the DH parameters can be determined by
taking the first difference of the transformation T in Equation (1) with respect to the
four DH parameters, giving

∆T =
∂T

∂ϕ
∆φ +

∂T

∂α
∆α +

∂T

∂a
∆a +

∂T

∂d
∆d. (2)

Figure 1: KUKA KR-15/2 six axis robot.

The partial derivatives are Jacobians with respect to the DH parameters. The differ-
ences ∆ϕ, ∆α, ∆a and ∆d may be interpreted as the corrections to the DH parameters.
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The corrections may be determined by first measuring many1 poses of the robot in its
workspace. Using Equation (2) a conventional Jacobian representation can be formulated
as

∆x = J∆ρ, (3)

where ∆ρ is the combined vector of DH parameter errors and J is the combined Jacobian
matrix. For each measured pose, assuming the DH parameter errors to be constant, there
will be one ∆ρ vector and one J matrix. The difference ∆x may be viewed as the error
in the EE pose, obtained by subtracting the computed from the measured pose:

∆x = xmeas − xcomp, (4)

A suitably overconstrained set of Equations (3) can be solved, in a least-squares sense,
for ∆ρ. Modification of this procedure for different kinematic models is easily accom-
plished. However, the most difficult aspect of kinematic calibration is obtaining accurate
measurements of the EE pose.

2 Homogeneous Transformations

We will make extensive use of homogeneous coordinate transformations in the develop-
ment of the calibration equations. A few words on their structure are warranted.

Figure 2: Coordinate transformation from {B} to {A}.

The general case of mapping the coordinates of a point P represented in one coordinate
reference frame {B} to those of the same point in an arbitrarily displaced frame {A}
must account for the translation and rotation of {A} with respect to {B}. Referring
to Figure 2, we can first change the representation of the point in {B}, indicated by the
position vector Bp, to an intermediate frame with the same orientation as {A}, but whose

1Many in this context means enough measurements should be obtained to suitably over constrain the
system of Equations (3).
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coordinate origin is incident with {B}. Then account for the translation component of
the displacement with simple vector addition:

Ap = ARB
Bp +A pBORG, (5)

where Ap is the position vector of P represented in {A}, Bp is the position vector of P
represented in {B}, ARB is the rotation matrix changing the orientation from {B} to {A},
and ApBORG is the position vector of the origin of reference frame {B}, OB, represented
in frame {A}.

Equation (5) describes a transformation of a position vector from its description in
frame {B} to its description in frame {A}. Our notation convention makes it easy to
keep track of the transformation: it may be interpreted as the B’s cancel-out. However,
Equation (5) does not represent a linear transformation. This can lead to conceptual
and computational problems if many such equations need to be concatenated to obtain a
result. Additionally, its form is not as appealing as

Ap = ATB
Bp. (6)

We can remedy this by combining the translation and rotation components, which are
independent, into a single linear transformation:[

1
Ap

]
=

[
1 0

ApBORG
ARB

] [
1

Bp

]
. (7)

The 4x4 matrix is called a homogeneous transform, T. The term homogeneous refers to
the fact that a homogenising coordinate has been introduced so that the matrix combining
the rotation and translation is dimensionally compatible with the vectors. Hence, we
write:

Ap = ATB
Bp. (8)

Again, note that the convention of sub and super-scripts notation makes algebraic ma-
nipulations easy to follow. In general:

0Tn = 0T1
1T2 · · ·n−1 Tn. (9)

3 Nominal Denavit-Hartenberg Parameters

Assuming the transformations used by the controller to determine pose data from joint
encoder readings is known, the first step in the calibration procedure is to model the
robot. Perhaps the most fundamental problem in describing the working environment of
a robot is how to represent the relative positions and orientations of various components.
The most common approach is to systematically assign coordinate reference frames to
fixed and moving components in the workspace. From this, an algebraic model of the
geometry of the environment can be constructed.

To construct robot kinematic and dynamic models the Denavit-Hartenberg parameters
are usually employed. However, even these standard frames have two main variants in the
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literature [2, 3, 4]. Serial robots are typically modeled by considering them as kinematic
chains. These are sets of rigid bodies, called links, coupled together by kinematic pairs,
called joints. The joints each have only one degree-of-freedom (DOF). For a robot with
n joints numbered 1 to n, there are n + 1 links numbered 0 to n. Link 0 represents the
relatively fixed base and link n carries the EE. Joint i connects links i and i− 1.

Since each link is a rigid body its shape defines the relationship between the two
neighbouring joint axes associated with it, see Figure 3. The DH parameters for the ith

link are its length, ai, and twist, αi. Each joint is also described by two DH parameters:
the link offset, di, and the joint angle, ϑi.

Figure 3: The DH parameters.

3.1 Conventions for Attaching Frames to Links

To use the DH parameters coordinate frames must be assigned in a systematic way,
although there are two main conventions for doing so. This stems from the fact that the
DH parameters for the first and last links are arbitrary. The two main philosophies for
assigning the reference frames origins are:

1. The origin of frame i, Oi, is located on the axis of joint i + 1 [5, 2, 4, 6, 7]. It is
usually called the Denavit-Hartenberg (DH) form.

2. The origin of frame i, Oi, is located on the axis of joint i. It has been referred to as
the modified Denavit-Hartenberg (MDH) form [3, 4, 6].
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The DH form is suited to the kinematic calibration formulation, while the MDH form
is, because of the mixed indices, better suited to deriving the equations of motion using
an itterative approach [3].

Slight deviations from parallelism between two consecutive parallel axes can cause the
kinematic calibration closure equations to be ill conditioned. The modification to the DH
form proposed by Hayati [8] can then be used. We will call this set the nearly parallel axes,
or NPA-DH form. Additionally, the DH and NPA-DH forms can be combined [9] into a
single, general set called the general DH (GDH) form. These forms, with the exception
of the MDH, will be briefly discussed in the following.

3.1.1 The DH Form

Item 1 in Section 3.1 above is the convention originally put forward in 1955 by Denavit
and Hartenberg [5]. With reference to Figure 3, the details for assigning coordinate origin
and axes for link i are as follows:

1. Identify all the joint axes. Consider the neighbouring ones, i− 1, i and i+ 1.

2. Identify the common perpendicular between the two axes i and i+ 1, or their point
of intersection. At the point of intersection, or where the common perpendicular
meets the (i+ 1)th axis, assign the link frame origin, Oi.

3. For {0} and {1}, ensure the axes are aligned when ϕ1 = 0.

4. For {n− 1} and {n}, ensure the axes are aligned when ϕn = 0.

5. Assign the zi axis to point along joint axis i + 1. It is located at the distal end of
link i connecting it to link i+ 1.

6. Assign the xi axis to point along the common normal between joint axes i−1 and i.
If the axes are parallel, any convenient normal can be selected. If the axes intersect,
set xi normal to the plane containing zi−1 and zi.

7. Assign the yi-axis to complete a right-handed coordinate system.

Note, the frame assignment is not necessarily unique. For instance, when the zi-axis
is aligned with the (i + 1)th joint axis there is a choice of direction in which zi points.
As long as the procedure is strictly adhered to the uniqueness issue has no effect on the
kinematics. That is, the resulting transformation matrices will always yield geometrically
correct results with respect to the assigned reference frames.

3.2 First and Last Links: Base and Tool Frames

The first and last links in the robot kinematic chain require special attention. For the
first link (the ground), there is no i − 1 axis, and for the last link there is no i + 1 axis.
We can attach frame {0} to the relatively non-moving robot base, link 0. In the case of
the KUKA KR-15/2 we have positioned it so the origin is on the intersection of axis 1
with the plane of the floor. Additionally, we must have that when ϕ1 = 0, then x0 and
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x1 both have the same direction, and because of the assignment rules both intersect axis
1, but separated by a distance d1. Moreover the origins of {0} and {1} are offset by a
distance a1.

Frame {n−1} is attached last joint axis. We therefore need one more frame, connected
to the last axis, to account for tool offsets. This frame is also selected so that the xn-axis
aligns with the xn−1-axis.

3.3 DH Parameter Definitions

The four DH parameters describe the relative positions and orientations of the links and
relative positions of the joints. Refering to Figure 3, they are:

ϕi joint angle: the angle from xi−1 to xi measured about zi−1.
αi link twist: the angle from zi−1 to zi measured about xi.
ai link length: the distance from zi−1 to zi measured along xi.
di link offset: the distance from xi−1, to xi

measured along zi−1.

Figure 4 shows the DH parameter assignment for the Mitsubishi RV-M2 and the KUKA
KR-15/2.

Figure 4: DH parameters assigned to the Mitsubishi RV-M2 and the KUKA KR-15/2.
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Now we need a functional relationship that relates the pose of reference frame i to frame
i−1 in terms of the DH parameters. This function can be thought of as a transformation
that changes the coordinates of points in frame i to those of the same points in frame i−1,
i−1Ti. Thus, for an n axis arm we have divided the forward kinematics problem into n
sub-problems, namely the i−1Ti. To derive this transformation, we can further divide each
of the n transformations into four sub-sub-problems. Each of these four transformations
will be a function of only one link parameter and will be simple enough to write down by
inspection.

Figure 5: The intermediate reference frames {P}, {Q} and {R}.

We begin by defining three intermediate frames for each link: {P}, {Q} and {R}, see
Figure 5. Transforming coordinates from i to i − 1 may be thought of as a composition
of the following homogeneous displacement transformations:

i−1TR: rotate about zR by ϕi.
RTQ: translate along zQ (zi−1) a distance di.
QTP : translate along the xp (xi) a distance ai.
PTi: rotate about xi by αi.

This gives

i−1Ti = i−1TR
RTQ

QTP
PTi, (10)
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or explicitly

i−1Ti =


1 0 0 0
0 cϕi −sϕi 0
0 sϕi cϕi 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1
di 0 0 1




1 0 0 0
ai 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 cαi −sαi

0 0 sαi cαi

 , (11)

where cϕi means cos(ϕi), sϕi means sin(ϕi) with ϕi being the angle the xi-axis makes
relative to the xi−1-axis. Multiplying gives

i−1Ti =


1 0 0 0

aicϕi cϕi −sϕicαi sϕisαi

aisϕi sϕi cϕicαi −cϕisαi

di 0 sαi cαi

 . (12)

For a serial arm with n joints there will be n such transformations. It is these DH
transformations that determine the functional relationship mapping the EE pose to the
DH parameters. Transforming the coordinates from frame n to the fixed base frame 0 is
achieved by multiplying together the individual joint transforms. In general we have

0Tn = 0T1
1T2 · · ·n−2 Tn−1

n−1Tn. (13)

For the KUKA KR-15/2 we have assigned the the parameters listed in Table 1, which
correspond to those illustrated in Figure 4.

i ϕi αi (deg.) ai (m) di (m)
1 ϕ1 90 0.300 0.675
2 ϕ2 0 0.650 0
3 ϕ3 90 0.155 0
4 ϕ4 -90 0 0.600
5 ϕ5 90 0 0
6 ϕ6 0 0 0.140

Table 1: DH parameter assignments.

3.3.1 The NPA-DH Form

The following modification of the DH parameters, proposed by Hayati [8], address the
issues associated with deviation from parallelism. Rather than using the common normal
between adjacent axes, a plane perpendicular to axis i contains the origin of frame i− 1,
Oi−1, is defined, see Figure 6. The intersection of this plane with joint axis i + 1 defines
the origin of frame i, Oi. The line between Oi−1 and Oi defines the direction of xi. The
zi axis lies along joint axis i+ 1.
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The four NPA-DH parameters are:

ϕi joint angle: the angle from xi−1 to xi measured about zi−1.
αi link x-twist: the angle from zi−1 to zi measured about xi.
βi link y-twist: the angle from zi−1 to zi measured about yi.
ai link length: the distance from zi−1 to zi measured along xi.

Figure 6: The NPA-DH parameters.

The transformation between adjacent reference frames can be derived in a way similar
to that for the DH form. Transforming coordinates from i to i− 1 may be thought of as
a composition of the following:

i−1TR: rotate about zi−1 by ϕi.
RTQ: translate along xi−1 a distance ai.
QTP : rotate about xi by αi.
PTi: rotate about xi by βi.

When multiplied out, the above transformations yield

i−1Ti =


1 0 0 0

aicϕi −sαisβisϕi + cβicϕi −sϕicαi sαicβisϕi + sβicϕi

aisϕi sαisβicϕi + cβisϕi cϕicαi −sαicβicϕi + sβisϕi

0 −cαisβi sαi cαicβi

 . (14)

3.3.2 The GDH Form

The DH and NPA-DH forms can be combined into a single form that is immune to the
numerical problem associated with the DH form. The GDH form has the advantage
that only one form is required for a serial robot with revolute joints. Thus, the GDH
parameters are
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ϕi joint angle: the angle from xi−1 to xi measured about zi−1.
αi link x-twist: the angle from zi−1 to zi measured about xi.
βi link y-twist: the angle from zi−1 to zi measured about yi.
ai link length: the distance from zi−1 to zi measured along xi.
di link offset: the distance from xi−1 to xi measured along zi−1.

The GDH transformation is

i−1Ti =


1 0 0 0

aicϕi −sαisβisϕi + cβicϕi −sϕicαi sαicβisϕi + sβicϕi

aisϕi sαisβicϕi + cβisϕi cϕicαi −sαicβicϕi + sβisϕi

dicβi −cαisβi sαi cαicβi

 . (15)

Note that when βi = 0 the DH form is recovered, when di = 0 the NPA-DH form is
recovered.

4 Kinematic Error Model for a Single Joint

After selecting an appropriate kinematic model, we can formulate the difference equations
needed in the parameter identification problem, as in Equation (2). The aim is to ulti-
mately use the GDH form, however for these preliminary stages in the development of our
calibration procedure we shall use only the DH form. Moreover, no stochastic measures
will be employed. Only when the procedure is up-and-running will more sophistication
be added.

Recall that variations of the coordinate transformation between coordinate frames
attached to neighbouring links with respect to the DH parameters can be determined by
taking the first difference of T from Equation (1) with respect to the four DH parameters,
giving Equation (2), which is reproduced below for for a single joint relating link i to i−1:

∆ i−1Ti =
∂ i−1Ti

∂ϕi

∆ϕi +
∂ i−1Ti

∂αi

∆αi +
∂ i−1Ti

∂ai

∆ai +
∂ i−1Ti

∂di

∆di. (16)

Differentiating Equation (12) with respect to ϕi yields the first term in Equation (16).
We then set this derivative equal to the product of the original DH transformation with
another:

∂ i−1Ti

∂ϕi

=


0 0 0 0

−aisϕi −sϕi −cϕicαi cϕisαi

aicϕi cϕi −sϕicαi sϕisαi

0 0 0 0

 = i−1TiQϕi
. (17)

An expression for the matrix Qϕi
comes from

i−1TiQϕi
=

∂ i−1Ti

∂ϕi

⇒ Qϕi
= i−1T−1

i

∂ i−1Ti

∂ϕi

. (18)

We obtain

Qϕi
=


0 0 0 0
0 0 −cαi sαi

aicαi cαi 0 0
−aisαi −sαi 0 0

 . (19)
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For the other three DH parameters, we similarly obtain

Qαi
= i−1T−1

i

∂ i−1Ti

∂αi

=


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 . (20)

Qai
= i−1T−1

i

∂ i−1Ti

∂ai

=


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , (21)

Qdi
= i−1T−1

i

∂ i−1Ti

∂di

=


0 0 0 0
0 0 0 0
sαi 0 0 0
cαi 0 0 0

 , (22)

Substituting the results of Equations (19)-(22) back into Equation (16) gives

∆i−1Ti = i−1Ti(Qϕi
∆ϕi + Qαi

∆αi + Qai
∆ai + Qdi

∆di). (23)

Proceeding according to Mooring, et al [4], we define the error matrix δT such that

∆i−1Ti = i−1Tiδ
i−1Ti, (24)

which means

δi−1Ti = Qϕi
∆ϕi + Qαi

∆αi + Qai
∆ai + Qdi

∆di. (25)

Expanding Equation (25) we obtain the structure for the error matrix:

δi−1Ti =


0 0 0 0

∆ai 0 −cαi∆ϕi sαi∆ϕi

aicαi∆ϕi + sαi∆di cαi∆ϕi 0 −∆αi

−aisαi∆ϕi + cαi∆di −sαi∆ϕi ∆αi 0

 . (26)

In essence, the error matrix δi−1Ti represents a velocity matrix, as found in [3, 7].
This is because it represents a constrained motion from the nominal pose to the actual
pose that occurs in the limit as the change in time tends to zero. As such, the proper
orthonormal rotation matrix embedded in i−1Ti has been differentiated once with respect
to time. What is the time derivative of a proper orthonormal matrix? Suppose we have
a proper orthonormal matrix P. We know, by definition, that

PPT = PP−1 = I, (27)

the product of P and its transpose yields the identity matrix of same dimension as P.
Differentiating Equation (27) with respect to time gives

PṖT + ṖPT = 0. (28)
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Equation (28) may be rearranged, yielding

PṖT + (PṖT )T = 0. (29)

Let’s define the product PṖT ≡ Ω and substitute it back into Equation (29):

Ω + ΩT = 0. (30)

The quantity Ω in Equation (30) is, by definition, a skew symmetric matrix. Furthermore,
by the definition of Ω we immediately have

Ṗ = PΩT . (31)

Because Equation (26) is a differential displacement transformation the rotation and
translation errors are embedded in it. The rotation component, R, is in general skew
symmetric [10]. It must have the same form as Ω:

Ω ⇒ δi−1Ri =

 0 −δz δy
δz 0 −δx
−δy δx 0

 . (32)

Hence, we compose the orientation error vector, δ, of the orienting errors with respect to
the robot base coordinate axes x, y and z, respectively. This gives for the ith coordinate
transformation

δi =

 ∆αi

sαi∆ϕi

cαi∆ϕi


=

 0
sαi

cαi

∆ϕi +

 1
0
0

∆αi. (33)

Moreover, the displacement error, di, with respect to the robot base coordinate axes
x, y and z, respectively is extracted from the first column of Equation (26):

di =

 ∆ai

aicαi∆ϕi + sαi∆di

−aisαi∆ϕi + cαi∆di


=

 0
aicαi

−aisαi

∆ϕi +

 1
0
0

∆ai +

 0
sαi

cαi

∆di. (34)

Thus, the robot pose error vector is the concatenation of di and δi:

∆xi =

[
di

δi

]
. (35)

The pose error, ∆xi, is the vector associated with the linear and skew symmetric
rotation components of the error matrix, δ i−1Ti. It is due to the errors in the DH
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parameters which describe the kinematic geometry of links i− 1 and i coupled by joint i.
It can be expressed by the single linear equation

∆xi =

[
di

δi

]
=

[
k1

i ∆ϕi + k2
i ∆ai + k3

i ∆di

k3
i ∆ϕi + k2

i ∆αi

]
, (36)

where

k1
i =

 0
aicαi

−aisαi

 , k2
i =

 1
0
0

 , k3
i =

 0
sαi

cαi

 . (37)

Note the superscripts are indices and not exponents.

5 Kinematic Error Model for the Entire Robot

The next aim is to generalize the preceding analysis to the entire robot. That is, to express
the positioning and orienting errors at the EE frame, relative to the fixed base frame, in
terms of the DH parameters. For a robot with n joints the kinematic error model will
be composed of at least 4n unknown DH error parameters. We can express the deviation
from the computed DH transform using the additive differential transformation, ∆T, of
T [10], as derived in the last section for a single joint:

0Tn + ∆0Tn = (0T1 + ∆0T1)(
1T2 + ∆1T2) · · · (n−1Tn + ∆n−1Tn)

=
n∏

i=1

(i−1Ti + ∆i−1Ti). (38)

Expanding Equation (38), ignoring second order products, yields

0Tn + ∆0Tn = 0Tn +
n∑

i=1

(0T1 · · ·i−2 Ti−1)∆
i−1Ti(

iTi+1 · · ·n−1 Tn). (39)

Next, substitute the relation

n∑
i=1

0Tn(iTi+1 · · ·n−1 Tn)−1 =
n∑

i=1

(0T1 · · ·i−1 Ti), (40)

together with Equation (24) into Equation (39):

∆0Tn =
n∑

i=1

0Tn(iTi+1 · · ·n−1 Tn)−1δi−1Ti(
iTi+1 · · ·n−1 Tn). (41)

Now, define the matrix Uk to be the product of the T matrices from k to n, the current
joint to the end of the manipulator:

Uk =
n∏

i=k

i−1Ti, (42)
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we can write

∆0Tn = 0Tn

(
n∑

i=1

U−1
i+1 δ

i−1TiUi+1

)
. (43)

Recalling Equation (24), it is evident that

δ0Tn =
n∑

i=1

U−1
i+1 δ

i−1TiUi+1, (44)

for the index i = n, Un+1 is defined to be the identity matrix, Un+1 ≡ I.

Comparing Equations (24), (31) and (43) we must conclude that the rotation compo-
nent of δ0Tn is skew symmetric and has the following form [4]:

δ0Tn =


0 0 0 0
dx 0 −δz δy
dy δz 0 −δx
dz −δy δx 0

 . (45)

This follows from the fact that δ0Tn is a differential displacement transformation.

Rewriting the general form of Equation (24) as

0T−1
n ∆0Tn = δ0Tn, (46)

we can now equate pose errors to the quantity 0T−1
n ∆0Tn. It is known that [4]

0T−1
n ∆0Tn =


0 0 0 0

n · d + (p× n) · δ 0 −δ · (n× o) δ · (a× n)
o · d + (p× o) · δ δ · (n× o) 0 δ · (o× a)
a · d + (p× a) · δ −δ · (a× n) δ · (o× a) 0

 , (47)

where n, o and a are orthogonal unit vectors. Because of their orthogonality

o× a = n,

a× n = o, (48)

n× o = a.

By virtue of its structure, the general T matrix may be equated to the concatenation
of the vector p and the three orthonormal vectors n, o and a, thus:

T =

[
1 0 0 0
p n o a

]
. (49)

Expanding Equation (44) employing Equations (45), (47) and (48) yields the following
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closed form, explicit relations for the pose error:

dxn =
n∑

i=1

[
nu

i+1 · di + (pu
i+1 × nu

i+1) · δi

]
,

dyn =
n∑

i=1

[
ou

i+1 · di + (pu
i+1 × ou

i+1) · δi

]
,

dzn =
n∑

i=1

[
au

i+1 · di + (pu
i+1 × au

i+1) · δi

]
, (50)

δxn =
n∑

i=1

(
nu

i+1 · δi

)
,

δyn =
n∑

i=1

(
ou

i+1 · δi

)
,

δzn =
n∑

i=1

(
au

i+1 · δi

)
,

where the vectors pu
i+1, nu

i+1, ou
i+1 and au

i+1 comprise the Ui+1 matrix:

Ui+1 =

[
1 0 0 0

pu
i+1 nu

i+1 ou
i+1 au

i+1

]
, (51)

with the superscript u indicating the vector is a column of U. Additionally, the pose
errors are

δ i−1Ti ⇒ ∆xi =

[
di

δi

]
. (52)

Clearly, the Ui+1 depend on the nominal DH parameters since they are products of the
DH transformations. Whereas, di and δi are functions of the DH error parameters ∆ϕi,
∆αi, ∆ai and ∆di and by virtue of Equations (33) and (34). Substituting the relations
from these two equations into Equations (50) gives the elements of the pose error in terms
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we can compute:

dxn =
n∑

i=1

[
(nu

i+1 · k1
i ) + (pu

i+1 × nu
i+1) · k3

i

]
∆ϕi +

[
(pu

i+1 × nu
i+1) · k2

i

]
∆αi +

(nu
i+1 · k2

i )∆ai + (nu
i+1 · k3

i )∆di,

dyn =
n∑

i=1

[
(ou

i+1 · k1
i ) + (pu

i+1 × ou
i+1) · k3

i

]
∆ϕi +

[
(pu

i+1 × ou
i+1) · k2

i

]
∆αi +

(ou
i+1 · k2

i )∆ai + (ou
i+1 · k3

i )∆di,

dzn =
n∑

i=1

[
(au

i+1 · k1
i ) + (pu

i+1 × au
i+1) · k3

i

]
∆ϕi +

[
(pu

i+1 × au
i+1) · k2

i

]
∆αi +

(au
i+1 · k2

i )∆ai + (au
i+1 · k3

i )∆di, (53)

δxn =
n∑

i=1

(nu
i+1 · k3

i )∆ϕi + (nu
i+1 · k2

i )∆αi,

δyn =
n∑

i=1

(ou
i+1 · k3

i )∆ϕi + (ou
i+1 · k2

i )∆αi,

δzn =
n∑

i=1

(au
i+1 · k3

i )∆ϕi + (au
i+1 · k2

i )∆αi.

Equations (53) can be formulated as a single linear equation

[
dn

δn

]
=

[
J1 J2 J3 J4

J4 J3 0 0

]
∆ϕ
∆α
∆a
∆d

 . (54)

For a robot with six revolute axes, n = 6. The vector of DH parameter errors has
dimension 24×1 and is comprised of the four concatenated 6×1 individual DH parameter
error vectors, ∆ϑ, ∆α, ∆a and ∆d. The four 3 × 6 Ji sub-matrices are the coefficients
of the DH parameter errors. They are built-up as

J1 =

 [nu
2 · k1

1 + (pu
2 × n1

2) · k3
1] · · · [nu

7 · k1
6 + (pu

7 × nu
7) · k3

6]
[ou

2 · k1
1 + (pu

2 × o1
2) · k3

1] · · · [ou
7 · k1

6 + (pu
7 × ou

7) · k3
6]

[au
2 · k1

1 + (pu
2 × a1

2) · k3
1] · · · [au

7 · k1
6 + (pu

7 × au
7) · k3

6]

 , (55)

J2 =

 [(pu
2 × n1

2) · k2
1] · · · [(pu

7 × nu
7) · k2

6]
[(pu

2 × o1
2) · k2

1] · · · [(pu
7 × ou

7) · k2
6]

[(pu
2 × a1

2) · k2
1] · · · [(pu

7 × au
7) · k2

6]

 , (56)

J3 =

 (nu
2 · k2

1) · · · (nu
7 · k2

6)
(ou

2 · k2
1) · · · (ou

7 · k2
6)

(au
2 · k2

1) · · · (au
7 · k2

6)

 , (57)
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J4 =

 (nu
2 · k3

1) · · · (nu
7 · k3

6)
(ou

2 · k3
1) · · · (ou

7 · k3
6)

(au
2 · k3

1) · · · (au
7 · k3

6)

 . (58)

Equation (54) is nothing more than the Jacobian formulation given by Equation (3),
repeated below

∆x = J∆ρ, (59)

where ∆x is the 6 × 1 pose error vector of measured pose less computed pose, J is the
6 × 24 Jacobian and ∆ρ is the 24 × 1 DH parameter error vector of actual less nominal
DH parameters.

6 Obtaining the Jacobian by Direct Differentiation

The Jacobian is a mapping between the Cartesian linear and angular velocity of the EE
reference frame and the joint rates. If the DH parameters are considered to be constant
the Jacobian is a function of only the joint angles. The relationship is represented by:

ẋ = Jθ̇, (60)

where ẋ is the 6×1 vector of Cartesian linear and angular velocities, J is the 6×6 Jacobian
and θ̇ is the 6×1 vector of joint rates. The Jacobian can be obtained from the Plücker line
coordinates of the six joint axes with respect to the base frame origin. It is well known
that the Jacobian can be partitioned into linear and angular components. If only the
linear components are considered, as is the case when only linear measurements of the EE
reference point are made, the sub-Jacobian relating linear EE reference point velocities to
the six joint rates is easily obtained by taking the partial derivatives of the transformation
equation for the forward kinematics. However, we are limited to three measurements with
this method as the forward kinematics is a point transformation, limiting the dimension
to three.

If the DH kinematic model is used then in addition to the partial derivatives with
respect to the joint angles, the partial derivatives with respect to the DH parameters are
also required. First, we need a functional relationship that we can differentiate. We take:

x = f(ρ), (61)

where x is the homogeneous vector of Cartesian coordinates of the EE reference point
expressed in the base frame of the robot and f(ρ) is the product of the homogeneous
coordinate transformation from the EE frame to the base frame and the homogeneous
vector of Cartesian coordinates of the EE reference point expressed in the EE reference
frame. The homogeneous coordinate transformation is a function of (see Section 3): the
joint angles, φi; the joint twist angles, αi; the link lengths, ai; and the link offsets, di. For
the simplest model of a 6R robot, there are a minimum of 24 DH parameters (i.e., 4× 6).
This simple model does not calibrate the robot base frame relative to the measurement
frame, nor the tool frame (i.e., the camera attached to the robot tool, flange) relative to
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the EE frame. But, for our measurement concept, which provides distance differences, we
shall see that these additional frames need not be accounted for.

Taking the partial derivatives of f(ρ) with respect to all 24 parameters we obtain after
eliminating the homogeneous coordinate (which vanishes upon differentiation):


vx

vy

vz

 =
∂f

∂ρ


φ̇

α̇

ȧ

ḋ


, (62)

where,

∂f

∂ρ
=


∂f1

∂φ1
· · · ∂f1

∂φ6

∂f1

∂α1
· · · ∂f1

∂α6

∂f1

∂a1
· · · ∂f1

∂a6

∂f1

∂d1
· · · ∂f1

∂d6

∂f2

∂φ1
· · · ∂f2

∂φ6

∂f2

∂α1
· · · ∂f2

∂α6

∂f2

∂a1
· · · ∂f2

∂a6

∂f2

∂d1
· · · ∂f2

∂d6

∂f3

∂φ1
· · · ∂f3

∂φ6

∂f3

∂α1
· · · ∂f3

∂α6

∂f3

∂a1
· · · ∂f3

∂a6

∂f3

∂d1
· · · ∂f3

∂d6

 . (63)

This 3 × 24 Jacobian relating the linear velocities to changes in the DH parameters is
completely general and can be applied to any 6R wrist-partitioned robot architecture, but
its terms are quite complicated.

If the displacement errors due to the difference between where the robot thinks it is
and where it actually is are small relative to the link lengths then Equation (62) can be
used to represent this difference. That is, the difference equations are approximated by
Equation (62), and we can write ∆x

∆y
∆z

 =
∂f

∂ρ


∆φ
∆α
∆a
∆d

 , (64)

where the ∆ indicates the difference between measured and computed locations for the
Cartesian EE coordinates, while for the joint angles and DH parameters it is the difference
between actual and nominal parameter values.

For a simulated calibration procedure implemented in MATLAB the symbolic expres-
sions for each element in the Jacobian were evaluated using Maple V and converted to
MATLAB pseudo code, with some minor modifications. The Maple V command string
C(J[1,1],optimized) produces the MATLAB pseudo code for the first row, first column
Jacobian element. The additional arguement optimized causes common sub-expression
optimisation to be performed. The Maple V output is then cut-and-pasted into a MAT-
LAB sub-routine used to evaluate the Jacobian.

7 DH Parameter Identification

We are interested in solving either Equation (59), or Equation (64) for ∆ρ. Since there
are 24 unknowns and only 6, or 3 equations, either we need to formulate more equations,
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or measure more than one pose and approximate the solution in a least squares sense.
We’ll go with measuring more than one pose.

For purposes of discussing the parameter identification let us assume that we have
only EE reference point coordinates for measurements. If we measure m robot poses and
assume the DH parameter errors to be constant then ∆x will have dimensions 3m × 1
and J will have 3m× 24.

If the world were not cruel and the Jacobian had full rank (for a suitably large over
determined matrix full rank means that all there is no dependence between columns, hence
in our case full rank means 24) then we could simply employ the Householder reflection
algorithm embedded in MATLAB’s matrix division algorithm. This results in the least
squares approximation to the overconstrained system of equations. The MATLAB syntax
is simply

∆ρ = J \∆x.

However, the world is cruel. Because of the DH formulation, there is no guarantee that
the Jacobian will have full rank, and hence Householder reflections cannot, in general, be
used to solve the system in a least squares sense. An alternate approach is required.

7.1 Singular Value Decomposition

Singular value decomposition (SVD) is a very powerful method that can be used to solve
sets of equations that are either singular, or numerically very close to singular [11]. SVD
methods are based on a theorem which states that any m × n matrix A, whose number
of rows is greater than, or equal to its number of columns, m ≥ n, can be written as the
product of an m × n column-orthogonal matrix U (i.e., the dot product of each column
with itself is unity), an n × n diagonal matrix S (i.e., the off diagonal elements are all
zero) whose elements are greater than, or equal to zero (the singular values of matrix A),
and the transpose of an n× n orthormal matrix V (i.e., VVT = I):

Am×n = Um×nSn×nV
T
n×n. (65)

When we wish to determine the least-squares solution to an overconstrained set of
linear equations (i.e., more equations than unknowns) Ax = b whose coefficient matrix,
A, has some column dependencies we can use SVD. The least-squares solution vector x
is given by

x = {V[S−1(UTb)]}. (66)

Note, the computation must be carried out from right to left, as indicated by the brackets.
Let us examine the inverse of the singular value matrix, S−1, a bit more carefully.

Because S is a square diagonal matrix, its inverse is given by

S−1 =

[
diag

(
1

sj

)]
. (67)

If there are column degeneracies in A then some of the singular values will be zero, or
close to zero, depending on the level of degeneracy. For no column degeneracy, the rank
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of matrix A will be equal to the number of its columns. If it is rank deficient by one, then
two columns are linearly dependent and one of the singular values will vanish. In general,
the rank of the matrix corresponds to the number of non-zero singular values. It may also
be that A has full rank, but two, or more, columns may be nearly linearly dependent.
This, in turn, means that some of the singular values will be very small compared to the
others. Since Equation (66) depends on S−1 the solution will be numerically unstable.

The remedy to this problem is to simply set the troublesome 1/sj equal to zero! This
may seem a bad decision because it makes our rank deficient system even more rank
deficient. But, we actually improve the fit of the quantities that we can solve for. By
eliminating the small 1/sj we are throwing away linear combinations of equations that
are so corrupted by round-off error as to be, at best, useless. That is, the columns in
V corresponding to the zeroed 1/sj are linear combinations of solutions for x which are
insensitive to the measured data in b.

8 Simulated MATLAB Calibration Experiment

Using the Jacobian formulated as in Section 6, a MATLAB simulation of a calibration
experiment was performed. A KUKA KR-15/2 robot was modelled using DH parameters
(see Table 1). A home position was selected and arbitrary, but constant increments were
sequentially added to the home joint angles to change the robot configuration, these are
all listed in Table 2. The increments were selected so the final position would be in the
workspace after 100 increment steps, and so that all the joints would move in different
ways. The number of measured positions was set to be 100. The tolerance on the smallness
of singular values was set to be 10−6, and the convergence criterion was set to be

‖ J∆ρ−∆x ‖≤ 10−8.

Computed poses were determined with the nominal DH parameters and measured poses
were determined with some assigned parameter errors. The calibration procedure was
then run. Table 3 lists the results together with the % difference relative to assigned
parameter error values (note that degrees are given in rads, while lengths are in m).

For the simulated calibration experiment data the procedure converged after two it-
erations. Three of the singular values generated by the SVD algorithm were set to zero.
The em effective rank of the 300 × 24 identification Jacobian was, therefore, reduced to
21. Hence, only 21 of the parameters are observable.

8.1 Which Parameters Were Identified?

The calibration procedure identified 17 of the 24 parameter errors exactly. Three ad-
ditional parameters, ∆α5, ∆d2 and ∆d3 were identified with less than 25% difference
from the assigned error value, moreover the signs of these three errors agree with the
assigned ones. The identified error ∆ϕ5 was 87.65% greater than assigned, but the sign
was correctly determined. The remaining three identified parameter errors were com-
pletely wrong. However, the SVD algorithm had functionally reduced the rank of the
identification Jacobian by three, which justifies the above results.
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Initial position (deg.) Increments (deg.)
ϕ1 0.0 ∆ϕ1 -3.0
ϕ2 -90.0 ∆ϕ2 3.0
ϕ3 0.0 ∆ϕ3 -2.0
ϕ4 0.0 ∆ϕ4 -3.5
ϕ5 0.0 ∆ϕ5 3.2
ϕ6 0.0 ∆ϕ6 -2.5

Table 2: Initial joint angles; constant increments.

The question remains, how do we know which of the parameters have been accurately
identified in the absence of apriori knowledge?

8.2 On the Completeness of the Kinematic Model

The DH parameters represent the geometric components of the robot’s kinematic geome-
try. There are additionally non-geometric components, due primarily to the characteristics
of the joints, which make the encoder outputs different from the true joint angles. This
can be modelled by [12]

ϕi = kiψi + λi, (68)

where for the ith joint ψi is the joint encoder output, ki is the gain of joint angle sensor
and λi is the joint angle offset. However, for our first attempt, we assumed the gains to
be all unity and the joint angle offsets to be perfect.

9 Pose Measurement

The most difficult aspect of kinematic calibration is obtaining accurate measurements of
the EE pose. If, for instance, the aim is to calibrate the robot to have ±100µ positioning
accuracy then position measurements with ±10µ are required. These measurements are
costly in both time and money.

The measurement system consists A CCD camera, two MEL displacement sensors and
an LED array all mounted to the tool flange of the robot, see Figure 7. The measurement
equipment data are listed in table 4.
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Parameter error Assigned Identified % Difference
∆ϕ1 0.000870 0.00087 0
∆ϕ2 0.000940 0.00094 0
∆ϕ3 -0.001000 -0.00100 0
∆ϕ4 0.000620 0.00062 0
∆ϕ5 -0.000810 -0.00010 87.65
∆ϕ6 0.000260 −5× 10−9 -100.00
∆α1 0.000157 0.000157 0
∆α2 0.000130 0.000130 0
∆α3 -0.000160 -0.000160 0
∆α4 -0.000253 -0.000253 0
∆α5 0.000462 0.000524 13.52
∆α6 -0.000320 -0.000320 0
∆a1 0.000031 0.000031 0
∆a2 0.000051 0.000051 0
∆a3 0.000012 0.000012 0
∆a4 -0.000045 -0.000045 0
∆a5 0.000064 -0.000176 -375.00
∆a6 0.000058 0.000058 0
∆d1 -0.000075 -0.000075 0
∆d2 0.000031 0.000026 -16.13
∆d3 0.000022 0.000027 22.73
∆d4 0.000048 0.000048 0
∆d5 -0.000020 0.000001 105.00
∆d6 0.000078 0.000078 0

Table 3: Assigned, identified parameter errors, % difference for simulated calibration
experiment.

CCD-Camera Pulnix TM-6CN Resolution: 752(H)x582(V)
Cell size: 8.6(H)x8.3(V) µm

Electronic shutter 1/10000 s
Camera lens Rodenstock macro 2x CCD Lens
Displacement sensor 1 MEL M5L/10 Laser 1V/0.2mm
Displacement sensor 2 MEL M52L/2 Stereo Laser 1V/0.5mm
Multimeter Hewlett Packard 34401A multimeter
Framegrabber National Instruments PCI-1408 monochrome
GPIB card National Instruments AT-GPIB card
Flat standard PZA 1000x50x10mm DIN 874/0 ±0.8µm
Length standard PZA 1000x20x20mm, ruled DIN 865 ±10µm
Lighting Red LED array

Table 4: Measurement equipment.
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Figure 7: The measurement head.

10 Measurement Concept

Because the six error equations are independent, we should be able to use any subset to
identify the parameters. We have opted to try using only position measurements. As long
as all six robot axes are used, we should have enough to identify all parameters.

We determined the x and y robot base frame axes directions by having the robot
draw lines on the floor in these two directions. A plate with a 21 × 21 grid of holes
precisely drilled with 2.5cm between centres was rigidly mounted to the floor so the grid
was aligned with the axis directions of the base frame. Then two straight edges, one flat
and one ruled, were set on the grid so they were parallel and their length were in either
the x or y directions. The robot was then moved to a zero position over so that the plane
of the CCD camera chip was parallel to the xy plane, and so that the ruled markings of
the ruled straight edge were in its field of view and so the MEL distance sensors were
positioned above the flat straight edge.

We next measured linearly over 80cm in 1cm increments along two lines in the y robot
base frame basis directions and over 50cm in 1cm increments along three in the x. The
different distances was because of an oversight in positioning the plate: portions of the
metre long straight edges were always out of the work envelope of the robot.
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Figure 8: The x positioning error between two images.

Figure 9: The y positioning error between two images.

11 Discussion

Since we are only concerned in differences in position we only need relative position
measurements. That is, by using the LIN REL KRC command and reading the computed
position data from the robot controller we could compute the difference between computed
and measured position in the direction along the ruler. For a measurement in the x
direction, Figures 8, 9, and 10 show how measured differences were calculated. Image
processing gave us the linear regression in the centre ruler marking in each image. The
edge of the ruler was similarly computed and the y coordinate was the intersection of
the two lines. The z coordinate was given by the MEL distance sensors. Additional
information on the orientation changes about the axis perpendicular to the ruler length
and z directions.

However, at this point, only simulated measurement data has been used in the first
parameter identification attempts. So far we have not met with success. We always
encounter rank deficiency of J.
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Figure 10: The z position measurement.
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